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Depletion interaction between two colloidal particles in a nonadsorbing polymer solution
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The depletion effect between two spherical colloidal particles in nonadsorbing polymer solutions is inves-
tigated using the self-consistent field theory. The density distributions of polymer segments, the depleted
amount and depletion potential are calculated numerically in bispherical coordinates. The effects of chain
length, bulk concentration, and solvency are also investigated. In the dilute regime the depleted amount and the
depletion potential decrease as the two spherical particles approach to each other. The depth of interaction
increases and the width of interaction varies slightly with increasing bulk concentrations. In the semidilute
regime, with increasing bulk concentrations the width of interaction decreases and the depth of interaction
increases. No distinct repulsive potential is observed in semidilute regime. However, at high concentration the
depleted amount exhibits a barrier. The width and the depth of depletion potential increase with increasing the
chain length and the solvency. The contact potential is proportional to the polymer concentration and almost
independent on the solvency. In addition, the effect of depletion interaction on colloidal stability is analyzed.
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I. INTRODUCTION

The depletion effect attracts more and more attention over
the last decade because it plays an important role in many
industrial and biological applications. For example, the
depletion interaction lead to phase separation of colloidal
dispersions, protein crystallization, red blood cells clustering,
and the helical conformation of long molecular chains [1-4].
If the depletors are polymers the situation is more interest-
ing, especially, in colloid-polymer mixtures. The surfaces of
colloid particles are impenetrable for the polymers. Near the
surfaces there exists a depletion zone (usually characterized
by a depletion layer thickness). In the depletion region the
polymer density varies from zero to the value of the bulk
phase, as a result of the restrictions of conformational en-
tropy of polymers. When two objects approach each other
and the depletion regions overlap, there is an osmotic pres-
sure difference between outside region and inside region of
objects. This osmotic pressure difference pushes the two ob-
jects together and induces the so called depletion effect. This
effect embodies the change of conformational entropy and
translational entropy of the polymers, and also the role of the
solvents. It is a key factor in controlling the stability of the
colloidal dispersions. Flocculation or phase separation can
occur, which depend on the compositive effect of some pa-
rameters, such as the polymer concentration, the chain
length, the solvent quality, and the size of particles. An ac-
curate knowledge of the depletion potential is necessary and
it can provide us an in-depth understanding of the phase
behavior of the colloid dispersions.
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The depletion effect between two plates has been investi-
gated extensively [5-10]. On the other hand, the case of two
spheres is more interesting, since it not only is common in
experiments but also presents a model as a complicated con-
fined polymer system. The effect of confinement in the two-
sphere case is different from that in the two-plate case. As
two plates approach each other, if the distance between them
is smaller than the polymer size, there are few polymer coils
in the gap due to entropy penalty. However, for the two-
sphere case the space confinement is less intensive than that
in the two-plate case. The polymers have more conforma-
tional entropy, and they can enter the gap easily. In this situ-
ation the polymer-colloid size ratio has to be considered.
Asakura and Oosawa [11] and, independently, Vrij [12] cal-
culated the depletion potential between two colloidal par-
ticles in ideal dilute polymer solutions. They assumed that an
ideal polymer chain is a penetrable hard sphere (PHS) to
another polymer chain but is impenetrable for colloidal par-
ticles (so-called PHS model). Using this model they obtained
a simple depletion potential with a range of R, (the radius of
gyration of polymers) and a strength proportional to the con-
centration of polymers. Later, Joanny er al. [8] predicted the
existence of a depletion layer with the thickness equal to the
correlation length of semidilute solution in mean field con-
tent and used the scaling theory to determine the depletion
attractive interaction between two plates. The Derjaguin ap-
proximation [13] was employed to obtain the attractive inter-
action between two large spheres. The above methods works
well in the regime when the sphere radius R is much larger
than R, (“colloid limit”). In the opposite case, referred to as
“protein limit,” in which the spheres are much smaller than
the polymers, the polymer segments distribution in space
must be considered properly. This limit has been considered
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by many authors, including de Gennes [14], Schmidt [15],
Eisenriegler [16], and Fuchs and Schweizer [17]. They
treated the polymers on a monomer level using complex
techniques and took into account the many-body interac-
tions. When the polymer sizes are comparable with the
spheres, the situation becomes more complicated, especially
when the polymers with excluded volume are strongly con-
fined in the gap between two spheres. For the ideal polymers
Tuinier et al. calculated the polymer density profile using the
product function method, then the depletion interaction was
obtained from the polymer concentration using the negative
adsorption method [18]. Louis et al. calculated the depletion
potential by computer simulations and the Derjaguin ap-
proximation, and took into account the excluded volume ef-
fect [19]. Later, Tuinier and Fleer presented an analytical
mean-field depletion potential between two colloid particles
basing on the concept of depletion thickness which is deter-
mined by the properties of polymer solutions [20]. Recently,
Surve et al. used an accurate numerical scheme of polymer
mean-field theory to study the depletion interaction of pro-
teins in polymer solutions. The depletion characteristics are
studied at an effective polymer concentration [21].

In the present paper, we focus on the case in which the
sizes of the spheres are the same order of the polymer size or
the correlation length of polymer solution. We calculated the
polymer density profile in the complex space surrounding
two spheres using the self-consistent field theory (SCFT) in
bispherical coordinates. As an accurate model in the content
of mean field theory, the excluded volume effect of polymer
segments, the solvent quality and the chain length effect can
be taken into account in the present method. Inevitably our
mean-field theory has its range of validity in polymer solu-
tions because fluctuation is ignored completely in this
method [22]. The SCFT is only appropriate not too far from
the O point or in the concentrated solutions. But in dilute and
semidilute solutions with good solvents the fluctuation is im-
portant and the scaling description is suitable. For the major-
ity of this paper we focus on the range where the SCFT is
appropriate. For the calculations in semidilute regime with
complete excluded volume effect y=0, where the mean-field
approximation breaks down, we expect that our calculations
can provide the qualitative trends of depletion characteris-
tics.

Some theories predicted that the depletion interaction is
usually attractive, which is the origin of destabilization for
colloid dispersions. However, the other authors claimed that
there is a repulsive potential when the bulk polymer concen-
tration is high enough. Feign and Napper [9] used a Flory-
Huggins-like mean-field theory to calculate the depletion po-
tential between two particles. They found that the interaction
is attractive at low polymer concentration. But at high bulk
concentration there is a repulsive energy barrier, which is
high enough to cause a restabilization of the dispersions.
Fleer et al. [10] investigated the depletion effect between two
plates using numerical lattice calculations. They found that at
high bulk concentrations the depleted amount exhibits a
maximum when the distance between two plates is about the
free coil diameter, and there is a weak repulsive part in the
depletion potential. As a result the repulsive potential has
important effect on the stability of colloid suspensions. If the
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energy barrier is high enough the restabilization can occur.
The above research results stimulate us to investigate the
depletion interaction between two spheres at high polymer
concentrations.

This paper is organized as follows. In Sec. II we outline
the SCFT for a polymer solution in the grand canonical en-
semble. In Sec. III we develop the numerical method to solve
the self-consistent field (SCF) equations in the bispherical
coordinates. In Sec. IV we present and discuss the results for
the dilute and semidilute solutions. The depletion potential is
analyzed and the stability of polymer-colloid mixtures is dis-
cussed. In Sec. V we give the conclusion.

II. THEORETICAL FRAMEWORK

For an incompressible polymer solution with a given vol-
ume of V, the grand potential in equilibrium with a bulk
reservoir is given by [23,24]

% = f dr[x,(r) ,(r) — w,(r) ¢, (r) — w,(r) p,(r)]
B \%

— eAMpr _ eAusz, (1)

where y is the Flory-Huggins parameter characterizing the
effective interaction between polymer segments and solvent
molecules, which relates with the effective excluded volume
of a segment or, v=(1-2y)b>, where b is the Kuhn length of
a segment. In this paper, we use b as the unit of length and
kT as the unit of energy for simplicity; x=0.5 represents the
O solvent, in which the polymer chains are ideal Gaussian
chains; ¢,(r) and ¢(r) are the volume fraction of the poly-
mers and the solvents, respectively, while w,(r) and w(r)
are the corresponding self-consistent fields of polymers and
solvents, respectively; Au, and A, are the exchange chemi-
cal potentials of the polymers and the solvents in the solu-
tion, respectively; Q, is the partition function for the solvent
molecule in the field of w,(r), given by Q,=[dre~ ), Q,is
the partition function for the single chain in field of w,(r),
given by Q,=[drq,(r,N), where g,(r,N) is the propagator
for the chain with the degree of polymerization N and one
end at r. g,(r,N) is determined by the modified diffusion
equation

a b _,

Eqp(r’t) = EV Qp(r’t) - wp(r)qp(r’t)’ (2)

where ¢ is the arc length along polymer chain. For the prob-
lem of depletion effect, the boundary conditions are as fol-
lows: g(r,t)|r—T,,=0, where T',, represents the surfaces of
the impenetrated colloidal spheres; ¢(r,7) equals the value in
bulk concentration at infinity. The initial condition is
q(r,0)=1.

The density profiles of ¢,(r) and ¢,(r) and the fields of
w,(r) and wy(r) can be obtained from the following self-
consistent field equations:

wp(r) - ws(r) = X[l - 2¢p(r)]’ (3)

N

b,(r) = f dtq,(r,0)q,(r,N-1), (4)
0
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¢,(r) = e s, (5)

Since the exchange chemical potentials Au,, and Ay, are not
independent, we choose A,u,p 0. The bulk concentration of

0
polymers is qbp For convenience we denote it as ¢°. Thus,
A, can be obtained from ¢° by

0

1
Apy=1In(1 —¢°)—X,ln(%> - x(1-2¢". (6)

The above SCF equations have to be solved numerically.
For the polymer solution containing two impenetrated colloi-
dal spherical particles, once the density profiles and the self-
consistent fields are determined, we can calculate the excess
free energy with respect to the homogenous state

AF(h) = G(h) - Gy = AF, + AF, + AF,. )

Here, h=D-2R, which is the separation between the sur-
faces along the line of centers of two spheres with radius R
and center-center distance D; G, is the grand potential of
bulk concentration in V given by

@ _ 02, ( ¢0> ¢0 0
y = d>)+ In{ -5 (1-¢%;  (8)
AF, is the excess interaction energy with respect to the ho-
mogenous state; —AF, and —AF are the conformational en-
tropy of the polymers and the solvents with respect to those
in the homogenous phase. The detailed derivation of these
formulas is provided in the Appendix.

The depletion potential U(h) between two spheres is

given by
U(h) = AF(h) = AF(). 9)

In order to find out how the polymer density varies at differ-
ent conditions we define the depleted amount as I'(«)
—I'(h), where T'(h) is given by

I'(h) = f dr( ¢,(r) - ¢°], (10)
v
which is related to the total number of polymer chains in V.

III. NUMERICAL METHODS FOR SCF EQUATIONS IN
BISPHERICAL COORDINATES

A. Bispherical coordinates system

For a system including two solid spheres the bispherical
coordinates system is most convenient. A detailed descrip-
tion of bispherical coordinates system can be found in the
literature [25-27]. In the following we just give the main
features.

Given the radius R and the center-center distance D of
two spheres, the bispherical coordinates system using the
varies of (7, 0, ¢) can be constructed uniquely. One can de-
fine B=(h+2R)/R. Let 7, and 7_ to be the 7 coordinates of
the spherical surfaces, we have ,=(1/2)In(8>-1
+VB*—4p)/2, and 7_=—7,. Let a to be the distance between
the origin (7=0,6=m) and the poles (7p==x%) of the bi-
spherical coordinates system, we have a=R sinh 7,. Thus,
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the coordinates transform between (7, 6, ¢) and (x,y,z) is as
follows:

a sin 6 cos
x=—¢ , (11)
cosh 7 —cos 6

a sin #sin ¢
y=T_——— (12)
cosh n—cos 6

a sinh 7
I=—F————. (13)
cosh 7 —cos 6
The surfaces with constant coordinate 6§ are perpendicular to
the spherical surfaces with constant coordinate 7.
The volume integral in the bispherical coordinates is

2 T 74
ff(n,9,¢)dr=f d¢f dﬁf dnf(1,0,$)h jrhg.
0 0 7-

(14)

Here, the scale factors associated with these coordinates are
given by h,=hy=a/Q(n,6) and hy=asin 68/Q(7, 6), where
Q(7, 6)=cosh —cos 6. The domain of system is the rect-
angle delineated by 7_< %< 7+ and 0=< #< 7. The integral
for ¢ is a constant because of the symmetry. A uniform mesh
is used to discretize the (7, 6) space:

4

n= ]777+’

i=—N N

o e

j=0,1, ...,Ng.

Note that the point (0,0) represents infinity. The detailed in-
formation including the following numerical method can be
found in the reference of Roan ef al. [25].

B. Numerical methods for solving the modified diffusion
equation

To obtain the key quantity of ¢(r,7) we need to solve the
modified diffusion equation. The solution can be obtained
using the finite difference method and the alternating direc-
tion implicit (ADI) method.

In the bispherical coordinates the modified diffusion equa-
tion is given by

aq(n, 0;1) sz2 P inh 7 a
o (917261(7/,9 31— Q a7 6;1)
62
02‘](77’0 1)
1 cosh 7 cos - li
i) 0 sin 6 q(7],0 2
- w(7,0)q(n,6:1). (15)

The initial condition of propagator ¢(7, 8;1) is g(7, 6;0)=1
for all (7, 6). The boundary conditions are q(77,6’;t)|,7=7r_F
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=0 and dq(n, 6;1)/36|4— ,=0. When we take the boundary
0—0 and 6—  we have to use the relationship

cosh pcos -1 9

lim ———————q(7,0;1)=

0;1).
6—0orr Qsin 6 00

(902‘](77,
(16)

Therefore, as #—0 and §— 7 the modified diffusion equa-
tion at the boundary is reduced to

dq(n, 6;1) szZ{ P (
o 772q 7
P

+27261(77,0;t)} - w(n,0)q(n,6;1).  (17)

sinh n d
——q(7.6:1)

0;1) —
0 dn

In the following the finite difference method is employed to
discretize the modified diffusion equation in the uniform
mesh of the space (7, 6). The first and the second derivatives
of the function f(#, 6) at the point (7,, ;) are replaced by

2 f,+12mf7’l , (18)

éz .ﬁHZAg , (19)
aa;fu ﬁ+“+(];7;)jz e, (20)
ﬂ;fu L ””720}& 20 1)

Here, A and A are the step sizes of the uniform mesh;
An=n,/N, and A@=m/N, These expressions of finite dif-
ference have the second order accuracy in Az and A6.

From the above consideration we can obtain discretized
version of the modified diffusion equation

ﬁq . b2 Q Giv1j*+ Gi-1;— 29 B sinh 7, G, = qi-1
ot n 6 a (A 77) Qi,j 2A7]
+ LCOSh 7]COS 0— 1 Qi+l,j+ Qi—l,j_ 2‘]1’,]‘
Qi sin 6 (AB)?
di+1,j —4i-1,j
+ ;JMTL} - ;g (22)

When 6=0 or 7 the same discretized equation can be ob-
tained from Egs. (15) and (16). The boundary conditions are
4-N,j=4N,,j =0, g;1=g;-1, and C]zN5+1 CLNg

’fzhe contour variable t, or the “time” variable, is dis-
cretized as r=kAtr with k=0,1,...,N, and the step At
=N/N,. In the ADI method, the above discretized equations
can be solved by solving band diagonal equations implicitly
along alternating dlrectlons [28]. In this method, in order to
calculate the propagator ql ! at next “time” (k+1)At from
the propagator q - at initial tlme” kAt, the function q -at the
mlddle “time” kAt/2 is introduced. First, we calculate q J
from ‘L ; in the 7 direction by
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4= 4 _ U Qi [61,+1 S =2,
At/2 6 a* (An)?
_ sinh 7, iv1 ;= Gi
Qi; 2A7
1 cosh ncos 6
Q,j sin 6

145, it giy i~ 26]?,‘
(A0)*

+ l+l,l i—1,j — W, k 23
A D 04 (23)
For each j line we can obtain qj ; by solving the tridiagonal
equation from the above equatlon combining with the bound-

ary conditions. For a given ‘L j» We can obtain the qk+1 in the
6 direction as follows:

qfc+l ql* b2 Q Qf-:r]l, + qfc+11] _ 2qk+1
A2 6 & (A7)>

k+1 k+1
Sll’lh Ni49i+1 J qi—l,/

Qi,j 2A7
1 cosh ncos 6-
Q, J sin 6

1 Cli*+1,;‘ + q;‘*—l,;‘ - 2(1;,'
(A6)°

+ %} - ijq?j (24)
For each i row we can obtain qkjl similarly.

Our finite difference format is different from that of
Roan er al. [25], where they studied a different system
with end tethered polymers on two spheres In their
calculation w(i,j)q;; was replaced by w(i, g, T4 J)/ 2 or
(i, j)(g; j+ql+1)/ 2. However, we do not separate this term
in our calculation in view of the present boundary condi-
tions. The ADI method is unconditionally stable and leads a
second-order accuracy in space and “time,” which ensures
that the error is small. The solutions of the mean-field w(i,j)
are obtained when the difference between two following it-
erates is less than 1077, In order to calculate the volume
integrals over the whole space we employ the Simpson’s

formula with an accuracy up to the fourth order of A» and
A6.

IV. RESULT AND DISCUSSION
A. Density profiles

It is important to investigate the accurate polymer seg-
ments distribution in equilibrium because the distribution
embodies the geometrical confinement effect of the polymer
chains. The segment density profiles have been calculated
from the SCF equations for different parameters. Figures 1
and 2 show the typical examples which show how the space
confinement changes the segment distributions in the region
around two spheres. The three-dimensional pictures of den-
sity profiles, which are obtained after transforming the bi-
spherical coordinates to the Cartesian coordinates, are plot-
ted in two dimensional x—z space. The parameters are
chosen as R=10, N=100, x=0.5, ¢0=O.1. The distance be-
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FIG. 1. Polymer density profiles d)p(r) surround two particles at
the separation #=20. The parameters are taken as N=100, ¢°=0.1,
x=0.5, and R=10. The plot is obtained after transforming the bi-
spherical coordinates to the Cartesian coordinates followed by a
interpolation as to obtain an unform mesh.

tween two spheres are h=20, 4 for Figs. 1 and 2, respec-
tively. The radius of gyration of polymers is R,=4. At the
surfaces of the two spheres the polymers density is zero, and
it increases to the bulk concentration gradually far away
from the spheres. From the figures we can easily find that the
segments distribution varies greatly with the distance be-
tween the two spheres. When the distance is large, the den-
sity profiles near the two spheres are the same as in the
depletion region near the surface of a single sphere. When
the distance decreases to the polymer size, or when the
depletion regions belonging to two spheres begin to overlap,
the polymer segment concentration decreases rapidly. This
decreasing is most distinct in the central region between two
spheres. When the distance is smaller than some critical
value (depletion layer thickness), the density is quite low in
the gap. The polymers go out of the gap for seeking more
conformational entropy under the spatial confinement effect.
However, in the plates case the critical value is about twice

FIG. 2. Polymer density profiles ¢,(r) surround two particles at
the separation #=4. The parameters are taken as the same as those
in Fig. 1 and the plot is transformed from the bispherical coordi-
nates as that in Fig. 1.
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0 5 10 15 20 25 30

FIG. 3. The maximum polymer concentration ¢, along the
line of the centers of two spheres for y=0 and 0.5 as a function of
separation & at different bulk concentrations. The parameters are
taken as N=100, ¢°=0.1, and R=10.

of the thickness of depletion layer. We can conclude that the
confinement effect is weaker than that in plates case and the
polymers have more space to move. Even when the distance
h is small, there are still a few segments in the gap between
the two spheres [10]. It shows that the curvature effect is an
important factor for depletion effect. Thus, the shape of the
colloidal particles strongly affects the properties of a
polymer-colloid dispersion [2].

In the gap between two spheres, there is a maximum
value of polymer density along the line of centers of two
spheres. The maximum values of ¢,,,, as a function of the
separation & at y=0 and y=0.5 are given in Fig. 3. As two
spheres approach, the ideal polymers (xy=0.5) without ex-
cluded volume effect are excluded from the gap prior to the
polymers with excluded volume effect (y=0). The reason is
that the depletion layer thickness in the ideal polymer solu-
tion is larger than that in the good solvent case.

B. Depleted amount and depletion potential

As the depletion layers belonging to two spheres become
to overlap, the depletion effect occurs. It is necessary to in-
vestigate how the depleted amount and the depletion poten-
tial vary with the separation between two spheres.

Figures 4 and 5 show the depletion potential and the de-
pleted amount as a function of the separation #, respectively,
in lower bulk concentration case or, ¢O=0.004—0.O4, which
is in dilute regime. In this situation the polymer chains are
isolated coils. The trends of the depletion potential are simi-
lar to those between two plates, in which the depth increases
with increasing polymer concentrations. The range of poten-
tial remains nearly constant, which is about the order of the
natural polymer size. We also found that the depleted
amount relates to the depletion potential by U(h)/kzT
=[I'(e¢)=T"(h)]/N, which is the same as the result of Tuinier
et al. for the dilute polymer solution [18,20]. This relation-
ship can be obtained from the expression of Eq. (9). When
¢,(r) is much smaller than 1, using the relation In(1-¢),)
2—¢,,—¢12,/2 we can obtain
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0.0

-0.6 8
0 5 10 15

FIG. 4. The depletion potential between two spheres as a func-
tion of the separation 4 in dilute solutions with (750:0.004, 0.01,
0.02, and 0.04. The parameters are taken as y=0.5, N=100, and
R=10.

0
srt= [ ar{= 2 - ggen o] &g
@)

In ® solvent  x=0.5, and  hence AF(h)
= [dr{ °IN=g5()] = [dr[ 4~ 4, (0N, Here, 5™(r)
represents the concentration of the end points of chains and
we use the approximation d)f,“d(r) ~ ¢,(r)/N. Thus, Eq. (9) is
reduced to U(h)/kgT~[I"(«)-I"(h)]/N.

An interesting result can be obtained by numerical fitting
the depletion potential. The depletion potentials satisfy an
universal function U(h)/(kzT¢")=—c, exp(=h2/c;), where
¢y, C, and c3 are constants depending on the parameters R,
N, and x. For the current case the values are c;=13,
¢,=1.33, and c;=6, respectively.

Figures 6 and 7 show the depletion potential and the de-
pleted amount as a function of the separation #, respectively,
in higher bulk concentration case or, ¢°:0.06—O.2. The
other parameters are the same as those in Figs. 4 and 5. In
this case, the coils begin to overlap. The results are in quali-
tative agreement with those obtained by previous theoretical

50| _

0 5 10 15
h

FIG. 5. The depleted amount as a function of the separation / in
dilute solutions with ¢°=0.004, 0.01, 0.02, and 0.04. The param-
eters are taken as the same as those in Fig. 4.
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3t 4
0 5 10 15

FIG. 6. The depletion potential between two spheres as a func-
tion of the separation 4 in semidilute solutions with ¢°=0.06, 0.1,
and 0.2. The parameters are taken as the same as those in Fig. 4.

studies [19] and experimental data [29]. The range of the
potential decreases with increasing polymer concentration.
Since the depletion potential comes from the overlap of two
depletion layer belonging to two spheres, and the thickness
of depletion layer decreases with increasing polymer concen-
tration [20], the depletion potential has the same width as the
thickness of depletion layer. Different from dilute case, there
is no universal function form in semidilute case. More im-
portantly the minus of depleted amount as a function of A
exhibits a barrier in semidilute solution. This indicates that
when the two spheres approach to each other and the deple-
tion layers of two spheres begin to overlap, the total number
of polymers in system first decreases to the minimum, and
then goes up [see Eq. (10)]. The height of barrier increases
with increasing polymer concentration. In dilute solution the
total number of polymers in the system always increases
with decreasing h. This discrepancy indicates qualitatively
different depletion effect in dilute and semidilute regime. Al-
though the free energy of interaction between two objects is
determined largely by the depleted amount of polymer [10],
the depletion potential between two spheres in the semidilute
solution does not exhibit the barrier as the depleted amount.
Thus, in the present study no repulsive force appears even
when the bulk concentration is high, and the depletion inter-
action is always attractive.

0 5 10 15

FIG. 7. The depleted amount as a function of the separation / in
semidilute solution with ¢0=0.O6, 0.1, and 0.2. The parameters are
taken as the same as those in Fig. 4.
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FIG. 8. The contribution from different parts of the grand po-
tential and the grand potential as a function of the distance between
two spheres in dilute regime for ¢°=0.02. The parameters are taken
as the same as those in Fig. 4.

In order to understand the phenomenon further, we show
the different parts of grand potential [in Eq. (7)] as a function
of & in the dilute and semidilute solutions. Figure 8 is for the
dilute solutions with ¢°=0.02. In this case the interaction
energy between the polymers and the solvents, the confor-
mational entropy of polymers and the entropy of solvents
increase monotonously with decreasing 4. The compositive
effect of those interactions is a monotonous attractive poten-
tial. In semidilute case, as shown in Fig. 9, the entropy of
polymers increases monotonously. However, the interaction
part first decreases and then increases as two spheres ap-
proach. It exhibits the minimum when % is about the thick-
ness of depletion layer. The same behavior happens to the
entropy of solvent. The compositive effect of those interac-
tions is a monotonous attractive potential once again. This
phenomenon shows that, although the depleted amount ex-
hibits a barrier in semidilute regime, the solvents also play an
important role, which adjusts the grand potential in such a
way that the depletion potential remains attractive. The
present continuous SCF model does not predict a repulsive
depletion potential. However, in the lattice model adopted by
Fleer et al. [10] there exists an energy barrier when two
plates approach at high polymer concentration. One possible

15 T T
A
\
— U
A
10- \\ —_-.AFF 1
\\ ______ AF,
5t \ |
S - T AF,
N ‘\.\\ .
0-/>\// '.:.:-—
AR -
7 \\_///
-7
5k ,/, i
10 / #'=041
-10} 4
_15 1 1
0 5 10 15

h

FIG. 9. The contribution from different parts of the grand po-
tential and the grand potential as a function of the distance between
two spheres in semidilute regime for ¢°=0.1. The parameters are
taken as the same as those in Fig. 4.
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FIG. 10. The contact depletion potential as a function of the
bulk concentrations. The parameters are taken as the same as those
in Fig. 4.

reason of the discrepancy is because of the different bound-
ary conditions used in the different models. In the present
model we impose the polymer density equal to zero at the
surfaces of sphere. However, in the lattice model the segment
concentration at the first layer near the surface is a nonzero
value.

The contact potential cannot be calculated because bi-
spherical coordinates system does not exist for #=0. How-
ever, we can extrapolate the curve of depletion potential to
h=0 is by numerical fitting. The extrapolated results is rather
accurate since we can calculate the potential for very small /.
Figure 10 displays the contact potential as a function of poly-
mer concentration. It shows that U(0) is a linear function of
¢°. Eisenriegler has derived an exact result for the contact
potential for the limit of low polymer concentration and large
radius [30]

R?
U(0)=—471n 27V&R¢0.

The numerical prefactor in this equation is 277/3 In 2=1.45.
We find that our result is quite close to this result. This good
agreement indicates that the above equation is also suitable
to the situation with moderate size ratio of particle and poly-
mer in semidilute ® solution.

Figure 11 shows the effect of solvency for x=0, 0.2, 0.4,
and 0.5, respectively. The poorer the solvent is, the broader
the range of the depletion potential is. The reason is that the
thickness of depletion layer in the good solvent is thinner
than that in the poor solvent. However, the contact potential
is nearly the same for different solvency.

The effect of polymerization N is presented in Fig. 12.
The depth and the range of depletion potential increase as the
chain length increases at a fixed bulk concentration. The ex-
periment on the effect of molecular weight of nonadsorbing
polymer on depletion-induced flocculation sustains the above
results [31].

C. Consequences for colloidal stability

Once the quantitative depletion potential is obtained, we
can investigate the colloidal stability induced by the deple-

041808-7



YANG et al.
0.0 e — i
-0.5 i
— =0

= -—- 02

S ——- 04
Aof g 0.5 1
-1.5¢F E

0 5 10 15

h

FIG. 11. The effect of solvency on the depletion potential be-
tween two spheres as a function of separation 4. The parameters are
N=100, R=10, and ¢°=0.1.

tion interaction by calculating the second osmotic virial co-
efficient B, defined as

B, = 27Tf l1=e " ar,
0

where r=h+2R is the center-to-center distance between two
colloidal particles; W(r) is the total interaction potential be-
tween two particles. For hard spheres with only depletion
interaction W(r) is given by

o0, r<<2R,

W(r) =
W=\ vir—2r). r=2r.

The minus depletion potential will reduce B,. B, is sensitive
to the range and the strength of the depletion potential and it
is a suitable measurement for the depletion effect when the
colloid concentration is low enough and the many-body in-
teractions can be ignored. If the depletion attractive interac-
tion is strong enough, which can be achieved by increasing
the polymer concentration and chain length, or decreasing
solvency, B, becomes sufficiently negative and the colloidal
particles become unstable, and the phase separation or the
flocculation will occur. As a reference, we calculate the
Asakura and Oosawa (AO) depletion interaction derived by
Vrij [12,18], the diameter of penetrable hard spheres is

0 5 10 15
h

FIG. 12. The effect of chain length on the depletion potential
between two spheres as a function of separation /. The parameters
are x=0.5, R=10, and ¢°=0.1.
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FIG. 13. The second osmotic virial coefficient of hard spheres
B;ZBZ/(47TR3/ 3) as a function of the bulk concentrations ¢° with
the depletion potential calculated from SCFT and AO model, re-
spectively. The parameters are taken as the same as those in Fig. 4.

g'pHS:4Rg/ \r. The depletion potential between two spheres

1S
R 2 3
UA0<r>=—¢>°(— ?){1——(—’ )
Rg \;‘"]T 4 R+O-PHS/2

1 r 3
+ =] |. (26)
16 R+O'pHs/2

Figure 13 gives the results for B,=B,/(4mR>/3) as a func-
tion of polymer concentration using the depletion potential
calculated by the SCFT and the AO model. The overlap con-
centration is about 0.1. From Fig. 13, we can conclude that
when the spheres are the same order of the natural size of
polymers and the polymer concentration is higher than the
overlap concentration, B, becomes negative enough. The
value of B, predicted by the AO model is much larger than
ours. This means that in the AO model the depletion effect is
underestimated seriously when the colloid suspensions and
the polymers have the similar sizes. The underestimate be-
comes even worse with increasing polymer concentration.
The result indicates that, in general, if the polymer size is
comparable with the colloid particle size, the depletion in-
duced phase separation in semidilute solutions is more pro-
found than the previous theories predicted.

V. CONCLUSION

In this paper, the SCFT is employed to study the depletion
interaction between two colloidal particles in nonadsorbing
polymer solutions. The SCF equations are solved numeri-
cally in the bispherical coordinates to obtain the density pro-
file in the space and the depletion potential. With increasing
the separation between two spheres the polymers are pushed
outside of the gap between two spheres due to spatial con-
finement. The results show that, in the dilute and semidilute
solutions, the depletion interaction is always attractive, and
no repulsive interaction appears. The present model does not
predict the restability of the depletion effect in the semidilute
regime. On the other hand, the depleted amount exhibits a
barrier as a function of the separation between two spheres.
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The range of depletion potential is about the order of char-
acteristic length of polymer solutions, and decreases with
increasing polymer concentration in the semidilute solutions.
The depth of the interaction increases with the increasing
bulk concentration. The contact potential is proportional to
bulk concentration in solvent, even in the semidilute re-
gime. The poor solvent has broader range for the depletion
interaction. The longer the chain is, the stronger the attrac-
tive interaction is. Also, the stability of colloidal particles
induced by depletion interaction has been investigated. High
polymer concentration may induce the colloidal suspension
to be unstable. Moreover, our results show that in the AO
model the depletion effect was underestimated seriously
when colloidal particles and polymers have similar sizes.
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APPENDIX

The SCF equations can be solved for a homogenous state
with a bulk concentration ¢°. For such a case the density
profiles ¢, and ¢,, the propagator ¢ and the self-consistent
fields w, and w, are constants and denoted with superscript
0. The solutlon of the modified diffusion equation is ¢°()
=exp(— a)pt). If we choose the exchange chemical potential of
polymer Au,=0, the SCF equations are

) - w) = x(1-24°), (A1)
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¢ = ¢ = NV, (A2)

B=1— ¢ =g, (A3)

Given the composite ¢, we can obtain a)g, wg, and Au, by

1. ¢°
0_ il
w,=- Nln N (A4)
1 ¢
wS:—NlnF—X(l—ngO), (AS)
A =ln(l—¢0)—lln£0— (1-2¢% (A6)
Mg NN X .
The grand potential per unit volume is given by
Go <¢°) #°
_C - 1-¢").
g=7, x(1-¢"7° AT -(1-¢7)
(A7)

With the above results in homogenous state the different
parts of excess free energy AF,, AF,, and AF; are given by

AFe = f dr[X¢p(r)¢s(r) - X¢0(1 - ¢0)]’ (A8)
1%

& (), &
AF,= fvdr[wp(r)d’p(r) —qeN) - m( N ) ’ W}’
(A9)
0
AF‘Y:f dl'|:(1) (r)¢1)(r) ¢( )_ d) (?i])

-x(1-2¢01-¢"+(1 —¢°)] (A10)
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